23
24
25
26
27
28
29

39
40
41
42
43
44

Systematically Evaluating Static Analysis-Based Security Testing
Tools - The Gaps within Design and Practice

Amit Seal Ami
William & Mary
Williamsburg, Virginia, USA
aami@wm.edu

ABSTRACT

In this work, we demonstrate that while reliance on security-focused
program analysis techniques grows, gaps prevent the effective de-
sign, implementation, and evaluation of such techniques, partic-
ularly for static analysis-based security testing tools (SASTs). We
demonstrate that adapting mutation testing techniques specific
to the security domain is a practical approach to finding previ-
ously unknown, undocumented flaws that compromise the effective-
ness of SASTs. Furthermore, practitioners do not consider existing
benchmark-based evaluation sufficient, thus relying on subjective
factors, such as reputation, when choosing a SAST. Finally, we
report that the industry is not ready to handle such flaws because
of several factors, including a paradoxical assumption.

CCS CONCEPTS

« Security and privacy — Software security engineering.

KEYWORDS

static analysis, SAST, crypto-API misuse detector, mutation testing,
mutation-based evaluation, security, software engineering

ACM Reference Format:

Amit Seal Ami. 2023. Systematically Evaluating Static Analysis-Based Se-
curity Testing Tools - The Gaps within Design and Practice. In Proceedings
of The 31st ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (ESEC/FSE 2023). ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

After over a decade of research and development in both academia
and industry, security-focused program-analysis techniques are
now being used at nearly every stage of software development and
maintenance lifecycle, from requirements engineering to fault lo-
calization and fixing, e.g., through GitHub CodeScan Initiative[10]
for finding vulnerabilities, such as crypto-API misuse and sensitive
data-leaks. Furthermore, such techniques have gained worldwide
attention because of the recent high-profile attacks and exploit
across the public sector e.g., SolarWind[15], triggering responses
from both corporate and government entities, such as emphasiz-
ing security through the improvement of existing approaches, e.g.,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-XxXX-X/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Static Application Security Testing (SAST) tools. In essence, the use
and dependence on program-analysis techniques will only increase
to ensure software security.

The underlying cause of optimistically using and depending on
the security-focused analysis techniques, such as crypto-API misuse
detectors (in short, crypto-detectors) and sensitive data-leak detec-
tors, is the convenience these techniques offer through automation,
support for continuous integration and development (CI/CD), and
the promise of detecting vulnerabilities as long as these are within
scope without flaws. In addition, the potential of identifying vul-
nerabilities statically, i.e.,, without depending on runtime-analysis
in a time-consuming manner, has made the SAST-based tools an
attractive choice among the security-focused program-analysis
techniques.

However, such optimism is unwarranted, as we have generally
relied on manually curated, static benchmarks to gauge the effec-
tiveness of SASTs. This is also because of the lack of a systematic
framework that can handle the various patterns of vulnerabilities,
i.e., variants. Thus, this doctoral research proposes the systematic
evaluation of SASTs, susceptible data-leak detectors, and crypto-
API misuse detectors while leveraging the well-founded approach
of mutation analysis.

While traditional mutation analysis is used to gauge the effective-
ness of existing test cases, this thesis advocates that vulnerabilities
can be mutated to represent both the diverse variations of vulnera-
bilities that are implemented and introduced by developers, either
intentionally or unintentionally and the complex usage patterns of
relevant security-specific APIs, such as crypto-primitives enabling
APIs from language-specific frameworks. We propose that we can
systematically evaluate, analyze, and identify flaws in SASTs by
introducing mutated vulnerabilities in open source program source
code, which, then, is analyzed by a target SAST. This research ana-
lyzes both sensitive-data leak detectors and crypto-detectors from
industry and academia. We identify previously unknown, unique
flaws while gaining insights, such as possible causes and remedies.

In addition to this, this work identifies a key gap in the adoption
and use of SASTs in the software industry: the research community
does not possess an in-depth understanding of how SASTs are per-
ceived in the industry, e.g.,, whether practitioners are aware of the
flaws, or limitations, these SASTs may have, and whether such per-
ceptions and beliefs impact the adoption and use of SASTs. Without
addressing this critical gap, it is impossible to create SASTs that
are effective, i.e., possess fundamental properties that help ensure
software security, and aligned i.e., practitioners have an accurate un-
derstanding of what SASTs provide, instead of practitioners having
an inaccurate expectation of, and from SASTs.

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

114

115

116

https://orcid.org/0000-0002-9455-2230
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

Therefore, to explore this gap through a qualitative, interview-
based study in this research and report how practitioners with
different security and business needs choose SASTs and depend
on those. Furthermore, we study the beliefs and expectations of
practitioners regarding the limitations and flaws of SASTs, and how
they address those flaws of SASTs.

2 BACKGROUND AND RELATED WORKS

As mentioned, SASTs are gaining attention and focus from both
public and private sectors because of the recent focus on security
and privacy of software. Static analysis techniques are adapted
for finding security vulnerabilities, e.g., [8], resource leaks [4, 5, 7,
20], and crypto-API misuse [13, 18]. There exists several works on
evaluating SASTs, e.g., [16, 17]. However, our work is the first of
its type that adapts mutation testing technique that is guided by
a comprehensive, data-driven taxonomy for finding design and/or
implementation flaws in crypto-detectors.

Additionally, researchers have studied the use of static analysis
with practitioners, reporting that false-positive is perceived as a
significant problem [9, 12]. Finally, researchers have identified that
practitioners need security-specific support in the form of APIs and
tools, e.g., [11, 14, 19].

3 COMPLETED WORKS

3.1 Systematic Evaluation of Static Analysis
based Security Testing Tools

The lack of effective evaluation of SASTs is due to both (a) con-
tinued reliance on manually curated benchmarks, which may be
incomplete, inaccurate, non-representative of the diverse implemen-
tation patterns adopted by developers, and impractical to maintain
continuously, and (b) lack of a systematic, evolving framework.
The lack of a systematic, evolving framework, in turn, is attributed
to domain-specific factors, e.g., for crypto-APIs, a systematic ap-
proach needs to (i) consider all existing crypto-APIs, (ii) instantiate
realistic misuse-case mutations that are within the scope of crypto-
detectors, and (iii) need to be scalable without significant manual
intervention.

We address these challenges for the crypto-API domain by con-
structing the first data-driven taxonomy of crypto-API misuse by
analyzing academic and industry sources from the past 20 years
and identifying 105 crypto-API misuse cases. Further, to address
the second challenge, we analyze the claims made by the target
crypto-detectors from industry, academia, and open source com-
munity and report that i.e., crypto-detectors offer strong security
guarantees. Thus, we define a threat model consisting of three
types of adversaries: a benign developer who may accidentally mis-
use, a benign developer who may introduce a vulnerability while
trying to address an existing one, and an evasive developer. Fur-
thermore, we designed the crypto-API mutation operators that
mutate crypto-API misuse/vulnerabilities, i.e., instantiates misuse
variations. Additionally, we design mutation scopes for seeding the
mutations, representing realistic crypto-API use and threats. Finally,
we implement the Mutation Analysis for evaluating Static Crypto-
API misuse detectors, the MASC framework, that uses the mutation
operators, mutation scopes, and static analysis techniques to create

Amit Seal Ami

mutated, vulnerable software from open source applications to be
analyzed by crypto-detectors.

Our research evaluated 9 crypto-detectors from industry, academia,
and open source community and found 19 flaws in crypto-detectors.
During the responsible vulnerability disclosure process, we report
that while crypto-detectors are expected to be evaluated from a
security-centric evaluation perspective, i.e., hostile-reviewing be-
cause of their strong security guarantees, these are often only de-
signed from a technique-centric perspective, i.e., what static anal-
ysis techniques can or can not accomplish. Furthermore, we find
that developers of crypto-detectors may have different detection
scopes by design. For example, whereas some crypto-detectors are
designed to detect any crypto-API misuse as long as it is statically
analyzable, some crypto-detectors consider additional factors, such
as visibility and frequency in the wild. Further details of this work
can be found in our proceedings paper [1], whereas a separate con-
textualization of mutation testing techniques for android-specific
SASTs can be found in our earlier journal paper[2].

3.2 Identifying the Gaps: Perspectives of
Practitioners regarding SASTs

Discovering that SASTs may have security-compromising flaws,
preventing those from detecting vulnerabilities that they claim
to and are designed to detect, with different design factors and
goals, revealed a key gap that the research community previously
was not aware of or did not address appropriately: the research
community possesses a limited understanding of how software
developers perceive SASTs, their expectations from and beliefs in
SASTs regarding vulnerabilities, and how these perceptions and
beliefs impact the adoption and use of SASTs in practice.

To address this gap, our research studied the perspectives and
beliefs of a diverse group of practitioners through IRB-approved
surveys and interviews. This diverse group of practitioners rep-
resented different business and security needs, different levels of
experience regarding software engineering and security, and differ-
ent security needs due to (state-required) compliance from around
the world. Specifically, we explored the processes of choosing and
using SASTs for ensuring security in services and products, their
understanding and assumptions regarding the limitations and flaws
of SASTs, and how they address, i.e., acknowledge, navigate, or
work around those flaws and limitations of SASTs.

By applying reflexive thematic analysis with inductive coding [6],
we captured both the latent and semantic meaning of participants’
perceptions and contexts, such as limitations of security resources,
assurances of SASTs, organizational priorities, and product nature.
Our research identified that while practitioners care about and
prioritize security, a SAST’s objective effectiveness in detecting
vulnerabilities is not (or barely) considered by practitioners when
it comes to choosing. Hence, there exists a gap between the need of
practitioners from SASTs (security guarantees) and the criteria for
selecting SASTs (subjective, often ad-hoc processes). Moreover, the
gap is caused by two significant factors: (i) practitioners believe that
SASTs just work and detect everything within scope, and (ii) they
do not consider existing, benchmark-based evaluation of SASTs
sufficient, as they consider benchmarks to be simplistic, or biased.
As previously discussed, the MASC framework proposed by this

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289
290

Systematically Evaluating Static Analysis-Based Security Testing Tools - The Gaps within Design and Practice

research addresses this particular issue through a systematic evalu-
ation framework. Furthermore, we report that while the program
analysis community specifically focuses on reducing false positives,
practitioners want SASTs to be able to find critical vulnerabilities
before anything else, even at the cost of a high number of false
positives. Finally, our research revealed a critical paradox in the
assumptions made by practitioners. In short, practitioners rely on
SASTs to cover the gaps in manual analysis while also believing
that their manual analysis techniques can cover the gaps intro-
duced through (unknown) flaws in SASTs. A detailed version of our
work, with additional findings, research directions, and insights, is
available in our (to be published) proceedings paper [3].

4 CONTRIBUTION TO KNOWLEDGE

It is necessary to evaluate, identify, and address the flaws of security-
focused automated program analysis techniques, such as SASTs.
This research contextualizes mutation testing techniques in the
domain of SASTs and evaluates data leak detectors and crypto-
detectors to discover previously unknown, undocumented flaws
and identify the gaps that contribute significantly to creating those
flaws. Thus, it contributes by helping improve the state-of-the-art
SASTs. Further, we argue that our work is beneficial for the soft-
ware engineering community in general, as it helps improve SASTs
by identifying flaws, which would be used to improve the secu-
rity and privacy aspect of the software. Furthermore, we study the
perspectives, beliefs, assumptions, and understandings of diverse
practitioners regarding SASTs, through which we identify several
gaps that the research community needs to address, such as pri-
oritizing the reduction of false negatives for security, the need for
better, systematic evaluation techniques suitable to their contexts
and the lack of trust towards benchmark based evaluations, and
that practitioners are not prepared to handle the flaws of SASTs.

Overall, this research significantly changes and shapes views
towards both the evaluation and design of SASTs, and the design
priorities of SASTSs, a critical component for developing and main-
taining software security that continues to gain attention from both
public and private sectors due to the focus on security and privacy
of software at present era.

ACKNOWLEDGMENTS

The author is advised by Dr. Adwait Nadkarni and Dr. Denys Poshy-
vanyk at the Computer Science Department of William & Mary.
This work is supported in part by NSF-1815336, NSF-1815186, NSF
CNS-2132281, CNS-2132285 and CCF-1955853 grants, and a CoVA
CCI Dissertation Fellowship. Any opinions, findings, and conclu-
sions expressed herein are the author’s and do not necessarily
reflect those of the sponsors.

REFERENCES

[1] Amit Seal Ami, Nathan Cooper, Kaushal Kafle, Kevin Moran, Denys Poshyvanyk,
and Adwait Nadkarni. 2022. Why Crypto-detectors Fail: A Systematic Evaluation
of Cryptographic Misuse Detection Techniques. In 2022 IEEE Symposium on
Security and Privacy (S&P). IEEE Computer Society, San Francisco, CA, USA,
397-414.

[2] Amit Seal Ami, Kaushal Kafle, Kevin Moran, Adwait Nadkarni, and Denys Poshy-
vanyk. 2021. Systematic Mutation-Based Evaluation of the Soundness of Security-
Focused Android Static Analysis Techniques. ACM Transactions on Privacy and
Security 24, 3 (Feb. 2021), 15:1-15:37. https://doi.org/10.1145/3439802

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

[3] Amit Seal Ami, Kevin Moran, Denys Poshyvanyk, and Adwait Nadkarni. 2024.
“False negative - that one is going to kill you” - Understanding Industry Perspec-
tives of Static Analysis based Security Testing. In Proceedings of the 2024 IEEE
Symposium on Security and Privacy (S&P). IEEE Computer Society, San Francisco,
CA, USA. to be published in.

[4] Steven Arzt and Eric Bodden. 2016. StubDroid: Automatic Inference of Precise
Data-Flow Summaries for the Android Framework. In International Conference
for Software Engineering (ICSE).

[5] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2013. Flow-
Droid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware Taint
Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation - PLDI °14. ACM Press,
Edinburgh, United Kingdom, 259-269. https://doi.org/10.1145/2594291.2594299

[6] V. Braun and V. Clarke. 2021. Thematic Analysis: A Practical Guide. SAGE
Publications. https://books.google.com/books?id=eMArEAAAQBA]

[7] S. Calzavara, I. Grishchenko, and M. Maffei. 2016. HornDroid: Practical and
Sound Static Analysis of Android Applications by SMT Solving. In 2016 IEEE
European Symposium on Security and Privacy (EuroS P). 47-62. https://doi.org/
10.1109/EuroSP.2016.16

[8] B.Chess and G. McGraw. 2004. Static Analysis for Security. IEEE Security Privacy
2, 6 (Nov. 2004), 76-79. https://doi.org/10.1109/MSP.2004.111

[9] Maria Christakis and Christian Bird. 2016. What Developers Want and Need
from Program Analysis: An Empirical Study. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. ACM, Singapore
Singapore, 332-343. https://doi.org/10.1145/2970276.2970347

[10] Github 2020. About code scanning - GitHub Docs. https:
//docs.github.com/en/free-pro-team@Ilatest/github/finding-security-
vulnerabilities-and-errors-in-your-code/about-code-scanning.
Peter Leo Gorski, Luigi Lo Tacono, Dominik Wermke, Christian Stransky, Sebas-
tian Méller, Yasemin Acar, and Sascha Fahl. 2018. Developers Deserve Security
Warnings, Too: On the Effect of Integrated Security Advice on Cryptographic
API Misuse. In Fourteenth Symposium on Usable Privacy and Security, SOUPS 2018,
Baltimore, MD, USA, August 12-14, 2018, Mary Ellen Zurko and Heather Richter
Lipford (Eds.). USENIX Association, 265-281.
Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?.
In 35th International Conference on Software Engineering (ICSE) (San Francisco,
CA, USA, 2013-05). IEEE, 672-681. https://doi.org/10.1109/ICSE.2013.6606613
[13] Stefan Kriiger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden,
Florian Gopfert, Felix Gunther, Christian Weinert, Daniel Demmler, and Ram
Kamath. 2017. CogniCrypt: Supporting Developers in Using Cryptography.
In Proceedings of the 32Nd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2017). IEEE Press, Piscataway, NJ, USA, 931-936.
Sarah Nadi, Stefan Kriiger, Mira Mezini, and Eric Bodden. 2016. Jumping Through
Hoops: Why Do Java Developers Struggle with Cryptography APIs?. In Proceed-
ings of the 38th International Conference on Software Engineering (ICSE '16). ACM,
New York, NY, USA, 935-946. https://doi.org/10.1145/2884781.2884790
[15] U.S. Government Accountability Office. [n.d.]. SolarWinds Cyberattack De-
mands Significant Federal and Private-Sector Response (Infographic) | U.S.
GAO. https://www.gao.gov/blog/solarwinds-cyberattack-demands-significant-
federal-and-private-sector-response-infographic.
Felix Pauck, Eric Bodden, and Heike Wehrheim. 2018. Do Android Taint Analysis
Tools Keep Their Promises?. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2018). ACM, New York, NY, USA, 331-341.
https://doi.org/10.1145/3236024.3236029
Lina Qiu, Yingying Wang, and Julia Rubin. 2018. Analyzing the Analyzers:
FlowDroid/IccTA, AmanDroid, and DroidSafe. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis - ISSTA 2018.
ACM Press, Amsterdam, Netherlands, 176-186. https://doi.org/10.1145/3213846.
3213873
Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz,
Murat Kantarcioglu, and Danfeng (Daphne) Yao. 2019. CryptoGuard: High Pre-
cision Detection of Cryptographic Vulnerabilities in Massive-sized Java Projects.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security - CCS ’19. ACM Press, London, United Kingdom, 2455-2472.
https://doi.org/10.1145/3319535.3345659
Justin Smith, Brittany Johnson, Emerson Murphy-Hill, Bill Chu, and
Heather Richter Lipford. 2015. Questions Developers Ask While Diagnosing
Potential Security Vulnerabilities with Static Analysis. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering. ACM, Bergamo Italy,
248-259. https://doi.org/10.1145/2786805.2786812
[20] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2018. Amandroid: A
Precise and General Inter-component Data Flow Analysis Framework for Security
Vetting of Android Apps. ACM Transactions on Privacy and Security 21, 3 (April
2018), 1-32. https://doi.org/10.1145/3183575

[11

[12

(14

[16

(17

(18

[19

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
334

336
337
338
339
340
341
342
343
344
345
346
347
348

https://doi.org/10.1145/3439802
https://doi.org/10.1145/2594291.2594299
https://books.google.com/books?id=eMArEAAAQBAJ
https://doi.org/10.1109/EuroSP.2016.16
https://doi.org/10.1109/EuroSP.2016.16
https://doi.org/10.1109/MSP.2004.111
https://doi.org/10.1145/2970276.2970347
https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/about-code-scanning
https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/about-code-scanning
https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/about-code-scanning
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/2884781.2884790
https://doi.org/10.1145/3236024.3236029
https://doi.org/10.1145/3213846.3213873
https://doi.org/10.1145/3213846.3213873
https://doi.org/10.1145/3319535.3345659
https://doi.org/10.1145/2786805.2786812
https://doi.org/10.1145/3183575

	Abstract
	1 Introduction
	2 Background and Related Works
	3 Completed Works
	3.1 Systematic Evaluation of Static Analysis based Security Testing Tools
	3.2 Identifying the Gaps: Perspectives of Practitioners regarding SASTs

	4 Contribution to Knowledge
	Acknowledgments
	References

